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Numerical simulations are carried out to investigate vertical fluid particle dispersion
in uniformly stratified stationary turbulent flows. The results are compared with the
analysis of Lindborg & Brethouwer (J. Fluid Mech., vol. 614, 2008, pp. 303–314),
who derived long- and short-time relations for the mean square vertical displacement
〈δz2〉 of fluid particles. Several direct numerical simulations (DNSs) with different
degrees of stratification and different buoyancy Reynolds numbers are carried out
to test the long-time relation 〈δz2〉 = 2εP t/N2. Here, εP is the mean dissipation of
turbulent potential energy; N is the Brunt–Väisälä frequency; and t is time. The
DNSs show good agreement with this relation, with a weak dependence on the
buoyancy Reynolds number. Simulations with hyperviscosity are carried out to test
the relation 〈δz2〉 =(1 + πCPL)2εP t/N2, which should be valid for shorter time scales
in the range N−1 � t � T , where T is the turbulent eddy turnover time. The results
of the hyperviscosity simulations come closer to this prediction with CPL about 3
with increasing stratification. However, even in the simulation with the strongest
stratification the growth of 〈δz2〉 is somewhat slower than linear in this regime. Based
on the simulation results it is argued that the time scale determining the evolution
of 〈δz2〉 is the eddy turnover time, T , rather than the buoyancy time scale N−1, as
suggested in previous studies. The simulation results are also consistent with the
prediction of Lindborg & Brethouwer (2008) that the nearly flat plateau of 〈δz2〉
observed at t ∼ T should scale as 4EP /N2, where EP is the mean turbulent potential
energy.

1. Introduction
Mixing of passive and active scalars in the atmosphere and oceans often occurs

in stably stratified environments. Fluid particle dispersion studies in stratified flows
can give insight into such processes and aid modelling efforts (Ivey, Winters & Koseff
2008). Lindborg & Brethouwer (2008; hereafter referred to as LB) derived long-
and short-time relations for the vertical dispersion of fluid particles in stationary
and decaying stratified turbulent flows. The analysis shows that the mean square of
vertical particle displacements 〈δz2〉 for long times goes to a finite value in decaying
turbulence, while in stationary flows it approaches 〈δz2〉 =(4EP + 2εP t)/N2. Here
EP is the mean potential energy, εP the mean dissipation of potential energy and
N the Brunt–Väisälä frequency. The first term in the relation represents the finite
contribution of adiabatic dispersion, whereas the second term represents diabatic
dispersion due to irreversible mixing. LB also suggested that for shorter time scales,
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between N−1 and T , there should be a range in which 〈δz2〉 = (1 + πCPL)2εP t/N2,
where CPL is a constant. Based on ocean observations by D’Asaro & Lien (2000) they
made the estimate CPL ≈ 3. In this paper, we proceed the study of vertical particle
dispersion in stationary stratified turbulent flows and compare results of numerical
simulations with the relations derived by LB.

Vertical dispersion of particles in stationary stratified flows has previously been
analysed by Pearson, Puttock & Hunt (1983). Using a Langevin model, they predicted
a plateau with 〈δz2〉 ∼ 〈w2〉/N2 (where w is the vertical velocity fluctuation), when
the particle density does not change, and a linear growth 〈δz2〉 ∼ 〈w2〉t/N , when
molecular diffusion alters the density of the particles. LB show that the latter result
may be consistent with their relation for the diabatic dispersion. However, for the
adiabatic dispersion the analysis by Pearson et al. (1983) and LB predict different
results. In particular, Pearson et al. (1983) predicted that the asymptotic value of
adiabatic dispersion is reached after t ∼ N−1, whereas according to the analysis by
LB it is reached after a typical eddy turnover time and is independent of N .

Kaneda & Ishida (2000) analysed vertical dispersion in decaying stratified
turbulence by applying rapid distortion theory together with Corrsin’s conjecture.
They predicted a plateau for 〈δz2〉 at long times which is consistent with direct
numerical simulation (DNS) data and also with the result derived by LB. Nicolleau &
Vassilicos (2000), Nicolleau & Yu (2007) and Nicolleau, Yu & Vassilicos (2008) studied
dispersion in stationary rotating and stratified turbulence by kinematic simulations
(KS). They observed 〈δz2〉 ∼ EK/N2 (EK is mean kinetic energy) after long times.
Diabatic dispersion was neglected because molecular diffusion is not included in KS.
A linear model, KS and DNS were applied by Liechtenstein, Godeferd & Cambon
(2005, 2006) to study dispersion in rotating and stratified turbulence. For decaying
turbulence they found 〈δz2〉 ∼ 〈w2〉/N2 after some time. A similar plateau was also
observed in DNS of decaying stratified turbulence by Kimura & Herring (1996).
The investigation by Venayagamoorthy & Stretch (2006) is one of few examining
the role of diabatic particle displacements by changing particle density on vertical
dispersion. Through DNS of decaying stratified turbulence, they found that adiabatic
dispersion initially gives the largest contribution to vertical particle dispersion, but
after about one eddy turnover time diabatic dispersion dominates. The analysis of LB
is in agreement with this result. Simple models describing the latter process were then
investigated by Venayagamoorthy & Stretch (2006). The first DNS study of particle
dispersion in stationary stratified turbulence was by van Aartrijk, Clercx & Winters
(2008). A plateau was observed with 〈δz2〉 ∼ 〈w2〉/N2 after t ∼ N−1 but after longer
times 〈δz2〉 ∼ t in some of their simulations. The linear growth at late times, caused
by density changes of fluid particles by molecular diffusion, can only be observed in
stationary stratified flows as shown by LB. In the DNS by van Aartrijk et al. (2008)
it was greatly reduced at higher Prandtl numbers. Such a reduction, however, is not
to be expected in high-Reynolds-number flows if there is vigorous turbulent mixing
down to the small scales (Venayagamoorthy & Stretch 2006). Although these studies
have led to a better understanding of vertical dispersion in stratified flows there
still remain questions about the quantitative contribution of adiabatic and diabatic
dispersion.

Recent work on stratified flows can give useful background to dispersion studies.
Lindborg (2006) examined strongly stratified turbulence and introduced the notion
of elongated horizontal layers becoming unstable due to sharp vertical gradients and
consequently breaking down into smaller structures. Those in turn, break down into
even smaller structures and so on. Accordingly, an energy cascade from large to small
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scales develops. This picture was consistent with numerical simulations of stratified
turbulence by Lindborg (2006), Brethouwer et al. (2007) and Lindborg & Brethouwer
(2007) who also observed an inertial range with k

−5/3
h horizontal kinetic and potential

energy spectra. The finding that strongly stratified flow dynamics, although very
anisotropic, are essentially three-dimensional implies that even in this case turbulence
contributes to vertical dispersion.

In this paper, we examine vertical particle dispersion in stationary and uniformly
stratified turbulent flows through numerical simulations. The set-up of the simulations
is similar to that of Lindborg (2006), Brethouwer et al. (2007) and Lindborg &
Brethouwer (2007). The objective is to test the relations derived by LB and to clarify
the role of adiabatic and diabatic dispersion on different time scales. The main steps
and results of LB’s analysis are recapitulated in the next section.

2. Analysis of vertical particle dispersion
Assuming a constant background stratification, the Boussinesq equations read

du
dt

= − 1

ρ0

∇p + ν∇2u − Nbez , (2.1)

∇ · u = 0 , (2.2)

db

dt
= κ∇2b + Nw . (2.3)

Here, u is the velocity; w is the vertical velocity component; p is the pressure;
ν and κ are the viscosity and diffusivity respectively; ez is the unit vector in the
vertical direction; N is the Brunt–Väisälä frequency; b = gρ ′/(Nρ0) with ρ ′ and ρ0 the
fluctuating and background density respectively; and g is the acceleration by gravity.
With this buoyancy scaling the mean potential energy and the mean dissipation of
potential energy per unit mass are respectively

EP =
1

2
〈b2〉 , (2.4)

εP = κ〈∇b · ∇b〉 . (2.5)

In this study, we consider homogeneous flows. After integrating (2.3) along a fluid
particle trajectory and averaging over all fluid particles and some manipulations, we
find (see LB for details)

d〈δz2〉
dt

+
2κ

N

∫ t

0

〈∇2b(t ′)w(t)〉 dt ′ =
2

N2

[
dEP

dt
− d〈b(0)b(t)〉

dt
+ εP + κ〈b(0)∇2b(t)〉

]
,

(2.6)

where δz = z(t) − z(0), i.e. the vertical displacement of the fluid particle at time t

with respect to its initial point of release. We can assume that the last term can be
neglected for t 
 τ , where τ is the Kolmogorov time scale.

The second term on the left-hand side of (2.6) needs some consideration because it
cannot invariably be neglected in low- and moderate-Reynolds-number simulations.
Pearson et al. (1983) argued that this term is a leading-order term, while other
investigators (Pope 1998; Venayagamoorthy & Stretch 2006) have argued that it is
small at high Reynolds numbers. In LB we argued that this term scales as (εKν)1/2 for
t 
 τ , where εK is the dissipation rate of turbulent kinetic energy. Using this estimate
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and integrating (2.6) for a statistically stationary flow, we obtain

〈δz2〉 =
2

N2
εP t[1 − O(R−1/2)] +

〈δb2〉
N2

(2.7)

for t 
 τ . Here δb = b(t) − b(0) is the buoyancy change of a fluid particle and
R = εK/νN2 is the buoyancy Reynolds number. The last term in (2.7) results from
vertical isopycnal movements relative to their initial vertical positions. On longer time
scales, this adiabatic dispersion is constrained by the available energy in the flow.
The first term on the right-hand side of (2.7) results from density changes of the
particles by molecular diffusion. Small-scale diapycnal mixing, strongly enhanced by
turbulence, leads to irreversible changes of the equilibrium density levels about which
the particles oscillate. The O(R−1/2) term may play an important role in mixing of
stratified flow at low and moderate buoyancy Reynolds numbers.

For random initial conditions the adiabatic dispersion reaches the upper bound
4EP /N2 as t → ∞, and (2.7) becomes

〈δz2〉 =
2

N2
[εP t(1 − O(R−1/2)) + 2EP ]. (2.8)

We expect (2.8) to be valid for t 
 T in stratified turbulence, where T is an eddy
turnover time.

In LB we assumed that stratified turbulence has an inertial range with a Lagrangian
potential energy spectra of the form

EPL = CPLεP ω−2 (2.9)

for frequencies ω between T −1 and N . Here CPL is a constant. From (2.9) we can
deduce that the Lagrangian buoyancy structure function should have the form

〈δb2〉 = 2πCPLεP t (2.10)

for N−1 � t � T . Substituting this relation in (2.7) gives

〈δz2〉 =
2

N2
εP t[1 + πCPL − O(R−1/2)]. (2.11)

Using documented observations, LB estimated that CPL 
 3. LB showed that (2.11)
implies that the Lagrangian power spectrum of the vertical velocity is of the form

EwL =
2εP (1 + πCPL)

πN2
(2.12)

for ω between T −1 and N . We expect relations (2.9)–(2.12) to be relevant to strongly
stratified high-Reynolds-number flows.

In the next part of the paper we study vertical particle dispersion in stationary
stratified turbulence through numerical simulations to test the suggested relations.

3. Numerical method
3.1. Simulation of forced stratified turbulence

We carry out a series of DNSs of homogeneous stratified turbulence. In addition,
numerical simulations with hyperviscosity are carried out in order to study particle
dispersion in stratified flows with a pronounced inertial range. The numerical method
and codes are the same as in Brethouwer et al. (2007), Lindborg & Brethouwer
(2007) and Brethouwer & Lindborg (2008). In the DNS, a pseudospectral approach
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Run Re (×103) Fh R Pr Lh/Lv Nh × Nv kmaxη EP /EK εP /εK 〈w2〉/2EK Σ

A1 1.1 0.03 0.9 0.7 2.0 128 × 80 1.02 0.07 0.28 0.014 0.2
A2 2.1 0.02 0.9 0.7 3.3 256 × 96 1.03 0.08 0.29 0.011 0.2
A3 6.3 0.01 0.9 0.7 5.0 512 × 128 1.10 0.06 0.26 0.005 0.2

B1 1.0 0.1 9.3 0.7 2.0 128 × 80 1.06 0.18 0.51 0.11 3.4
B2 2.5 0.06 9.3 0.7 3.3 256 × 96 1.08 0.19 0.54 0.10 3.5
B3 5.5 0.04 9.5 0.7 5.0 512 × 128 1.15 0.17 0.51 0.07 3.4
B4 14 0.03 9.9 0.7 6.0 1024 × 256 1.21 0.15 0.48 0.06 3.4

C1 1.7 0.2 39 0.7 1.0 128 × 128 1.05 0.13 0.44 0.13 12
C2 2.8 0.11 37 0.7 1.0 256 × 256 1.08 0.16 0.54 0.13 14
C3 8.3 0.07 38 0.7 1.0 512 × 512 1.15 0.21 0.49 0.10 13

D1 1.3 2.2 6200 0.7 1.0 128 × 128 0.96 0.004 0.011 0.18 49
D2 2.4 1.6 6200 0.7 1.0 256 × 256 0.97 0.006 0.019 0.18 82
D3 8.9 0.8 5900 0.7 1.0 512 × 512 1.05 0.02 0.061 0.18 254

E1 1.0 0.2 44 2.8 1.0 256 × 256 2.05 0.14 0.30 0.14 36
E2 1.6 0.2 44 11.2 1.0 512 × 512 4.09 0.19 0.30 0.14 146

Table 1. Numerical and physical parameters of the DNSs: Lh/Lv is the aspect ratio of the
horizontal to vertical domain size; Nh, Nv are the number of nodes in the horizontal and
vertical direction respectively; kmax is the largest resolved horizontal wavenumber; Σ = εP /κN2

is the Cox number which is the ratio of the vertical eddy diffusivity to molecular diffusivity.

Run Fh Lh/Lv Nh × Nv EP /EK εP /εK 〈w2〉/2EK νh νv

H1 0.0014 64 512 × 128 0.10 0.27 0.0006 1.05 × 10−15 1.5 × 10−24

H2 0.0008 72 768 × 256 0.11 0.28 0.0003 5.7 × 10−17 4.2 × 10−27

H3 0.0005 64 1024 × 512 0.13 0.29 0.0002 7.2 × 10−18 6.5 × 10−29

Table 2. Numerical and physical parameters of the hyperviscosity simulations.

with triple periodic boundary conditions is applied to solve the Boussinesq equations
(2.1)–(2.3) with a constant background stratification. To obtain statistically stationary
turbulence, we force the velocity field with a constant power input. Horizontal
vortical modes are forced at horizontal wavenumbers kh � 3. Since the flow is
highly anisotropic in strongly stratified flows, we follow the approach taken by
Brethouwer et al. (2007) and use computational domains stretched in the horizontal
directions, taking care to resolve the largest vertical scales. In the simulations with
hyperviscosity the same numerical approach is used, with the difference that the
Laplacian diffusion operators in the integrated governing equations (2.1)–(2.3) are
replaced by the operators

Du = Db = νh∇4
h − νv

∂8

∂z8
, (3.1)

where ∇h is the horizontal Laplace operator and νh and νv are horizontal and
vertical diffusion coefficients respectively. More details on the numerical approach and
forcing are found in Brethouwer et al. (2007) and Lindborg & Brethouwer (2007).
Numerical and physical parameters of the DNSs and hyperviscosity simulations are
presented in tables 1 and 2 respectively. In the DNS runs there are three independent
non-dimensional parameters, the buoyancy Reynolds number, R = εK/(νN2), the
Froude number Fh = εK/(NEK ), where EK is the mean turbulent kinetic energy,
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and the Prandtl number Pr = ν/κ . The turbulent Reynolds number is defined as
Re = E2

K/(νεK ) = RF −2
h . For Pr ∼ 1, the resolution needed to carry out a DNS scales

as R9/4F
−7/2
h . This means that it is very demanding to perform simulations with both

large R and low Fh. With a fixed resolution we have to increase Fh when R is raised.
First, four sets of simulations are carried out in which R is varied between the sets
but is approximately equal for all simulations within each set, while Fh is varied. The
value of Pr is equal to 0.7 in all these simulations. The four sets are designated A, B,
C and D. Then, two DNSs, designated E1 and E2, are carried out with approximately
the same R and Fh as in run C1 but with different Prandtl numbers. The resolution
is successively doubled and the Prandtl number increased by a factor of four in
runs E1 and E2, i.e. Pr = 2.8 and 11.2 respectively. In this way we ensure that the
Batchelor scale η/P r1/2, with η the Kolmogorov length scale, is properly resolved.
The Cox number Σ listed in table 1 is the ratio of the vertical eddy diffusivity,
estimated as εP /N2 in accordance with the analysis, and the molecular diffusivity.
When the stratification is very strong, the Cox number is rather small, indicating a
possible influence of Pr on the vertical dispersion. In the hyperviscosity simulations
�z/lO 
 7 as in Lindborg & Brethouwer (2007), where lO = ε

1/2
K /N3/2 is the Ozmidov

length scale and �z the vertical grid spacing.

3.2. Particle tracking

To track fluid particles in the flow, we integrate

dxp

dt
= up (3.2)

with a fourth-order Runge–Kutta scheme, using the same time step as in the simulation
of the Eulerian field. To obtain the particle velocity up at the particle position xp ,
we employ a four-point Hermite interpolation scheme in the horizontal directions
(Choi, Yeo & Lee 2004) and a direct summation of the Fourier modes in the vertical
direction. When the flow is statistically stationary, we track 12 000–96 000 particles
with a random initial distribution in the simulations. To obtain particle statistics, the
DNSs are progressed till t = 200 T or even further (T = EP /εP ), except for runs B4,
C3 and E2 which are progressed till t = 100 T or further.

4. Characteristics of the simulated flows
After an initial transition period, all simulations converge to a nearly statically

stationary state in which the mean energy dissipation rate is equal to the imposed
constant forcing power. In some runs, though, we observe a slow energy growth due to
accumulation of energy in the shear mode, as also observed in some of our previous
simulations, but this has a minor effect on particle dispersion statistics.

Brethouwer et al. (2007) discussed the importance of the horizontal Froude number,
Fh, and the buoyancy Reynolds number, R. A characteristic of strongly stratified flows
with Fh � 1 is the horizontally layered structure with high shear rates between the
layers (Riley & deBruynKops 2003). When R � 1, vertical viscous shearing between
the layers is strong and affects the dynamics. This can be seen in the snapshot of
the buoyancy field taken from run A3 with R = 0.9, shown in figure 1(a). Localized
Kelvin–Helmholtz type of disturbances are present, but turbulence is suppressed, as
is obvious from the smooth horizontal layers. Brethouwer et al. (2007) showed that
when R 
 1 and Fh � 1 viscous forces are unimportant, and the vertical length scale
lv of the layers scales as lv ∼ U/N (U is a characteristic horizontal velocity). The
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(a) (b)

(c) (d)

(e) ( f )

Figure 1. Snapshots of the buoyancy field in a vertical plane in runs (a) A3, (b) B3, (c) C3,
(d) D3, (e) C1 and(f) E2.

horizontal layers are unstable and break down into smaller structures, giving rise to
a three-dimensional but strongly anisotropic forward energy cascade. Snapshots of
the buoyancy field in figure 1(b, c) taken from runs B3 and C3 show these features;
a layered structure as well as turbulence can be observed. According to the scaling
lv ∼ U/N the thickness of the layers should be larger in run C3 than in run B3, which
is also confirmed by the snapshots. The parameter R is proportional to (lO/η)4/3,
where η the Kolmogorov length scale. This implies that there are two distinct ranges
in strongly stratified turbulence when R 
 1. The dynamics of scales larger than
lO are strongly influenced by stratification and are anisotropic, while the dynamics
at smaller scales are weakly influenced by stratification and approach isotropy at
scales much smaller than lO . For a comprehensive DNS study of the influence of
R on spectra and energy transfer, please refer to Brethouwer et al. (2007). In most



156 G. Brethouwer and E. Lindborg

geophysical flows R 
 1 and, consequently, stratified turbulence plays an important
role in the oceans and atmosphere (Lindborg 2006; Lindborg & Brethouwer 2007;
Brethouwer & Lindborg 2008). The layered structure and strong anisotropy disappear
when Fh � 1, as we see in the snapshot taken from run D3. Figure 1 also shows
snapshots of the buoyancy field in runs C1 and E2 which have the same numerical
set-up, except for the resolution and Pr . The flow is clearly turbulent in both runs,
but as a result of a higher Pr , we see finer structures in run E2. The visualizations
in figure 1 illustrate that we have simulated stratified flows with widely different
dynamics.

5. Simulations versus analytical results
If R 
 1 the relations (2.8) and (2.11) can be written as

〈δz2〉∗ = 1 +
1

2
t∗ , t∗ � 1 , (5.1)

〈δz2〉∗ =
1

2
t∗ (1 + πCPL) , Fh � t∗ � 1 . (5.2)

Here, 〈δz2〉∗ = 〈δz2〉N2/4EP and t∗ = t/T are the non-dimensional mean square of
the vertical particle displacements and time respectively. For stratified turbulence, the
eddy turnover time T = EP /εP can alternatively be estimated as EK/εK .

5.1. Vertical particle dispersion in DNS

In figure 2 we show the time development of 〈δz2〉∗ versus t∗ in the DNSs together
with relations (5.1) and (5.2). DNSs with a similar value of R are grouped in the same
plot. The initial period shows ballistic dispersion with 〈δz2〉 ∼ t2 in all runs. Thereafter,
the growth of 〈δz2〉 slows down. In the regime Fh � t∗ � 1, (5.2) predicts 〈δz2〉∗ ∼ t∗.
More generally, we expect that the evolution of 〈δz2〉∗ becomes independent of Fh

when R 
 1 and Fh � 1. In the B runs Fh is indeed small and R is quite large.
Nevertheless, the curves in figure 2(b) still show a clear dependence on Fh for t∗ < 1.
The mean square displacement, 〈δz2〉∗, moves closer to the straight line representing
(5.2) as Fh decreases, but no linear range is visible. We must conclude that we have
to perform simulations with considerably lower Fh in order to test the relation (5.2).
Unfortunately, this is not possible using DNS.

In the simulations with Fh < 1 we see the onset of a plateau at t∗ ∼ 1, as expected.
This is most clearly seen in figure 2(b). It resembles the plateau observed by van
Aartrijk et al. (2008) and indicates that the adiabatic mean square displacement has
approached its upper bound 〈δz2〉 = 4EP /N2, i.e. 〈δz2〉∗ = 1. According to the analysis
of LB, the onset of the plateau shows up at t∗ � 1, while diabatic dispersion begins to
dominate at t∗ 
 2. The time scale separation is thus not very large, and consequently
an extended plateau will not appear in stationary flows as long as R � 1. However,
this might be different when R � 1. Van Aartrijk et al. (2008) obtained in the latter
case a long plateau in their DNS. The adiabatic dispersion regime or the onset of
a plateau cannot be seen in DNS results with Fh � 1 displayed in figure 2(d). Van
Aartrijk et al. (2008) observed the same behaviour.

After the slowdown of vertical dispersion seen in figure 2(a–c), 〈δz2〉∗ grows faster
again and approaches the asymptotic diabatic dispersion limit (5.1) with 〈δz2〉∗ ∼ t∗.
The DNS data displayed in figure 2 nicely approach this limit. Noticeable is that the
asymptotic diabatic dispersion limit is seen in all our DNSs with strong as well as weak
stratification with a difference in Fh of about two orders of magnitude. Furthermore,
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Figure 2. Time development of 〈δz2〉∗ versus t∗. The dashed and dotted lines show relations
(5.1) and (5.2) respectively, and the solid lines show DNS results. The arrow indicates the
direction of decreasing Fh or increasing Re. (a) A runs (R 
 1), (b) B runs (R 
 9), (c) C runs
(R 
 38), (d) D runs (R 
 6000).

the plots show the collapse of 〈δz2〉∗ for t∗ > 1 in DNSs with approximately equal
R. The buoyancy Reynolds number, R, is successively increased as we go from the
A runs in figure 2(a) to the D runs in figure 2(d). The relation (2.7) predicts that
〈δz2〉∗ → t∗/2 for long times, as R is increased. Going from figure 2(a) to figure 2(d)
we see that the simulation results are consistent with this prediction. Note that the
linear growth at late times only can be observed in stationary flows as explained by
LB. In decaying stratified turbulence, 〈δz2〉 goes to a constant as observed in many
DNSs (Kimura & Herring 1996; Kaneda & Ishida 2000; Venayagamoorthy & Stretch
2006). We have also confirmed this in simulations that are not presented here.

Figure 3 shows the time development of 〈δz2〉∗ versus t∗ in runs C1, E1 and E2.
These DNSs have the same numerical set-up, except for the resolution and Pr which
is 0.7, 2.8 and 11.2 in runs C1, E1 and E2 respectively. When Re is sufficiently
high we can expect molecular diffusivity to have a small influence on the dispersion
of particles (Venayagamoorthy & Stretch 2006). In figure 3 we see little difference
between the runs in the late-time dispersion, but εP is somewhat smaller for Pr > 1
than for Pr < 1 as shown in table 1, implying that the vertical diapycnal dispersion
is slightly smaller in runs E1 and E2 than in run C. Overall the influence of Pr

are relatively small if R 
 1, which illustrates the turbulent nature of the diabatic
dispersion. In contrast, diabatic dispersion reduces strongly for increasing Pr in our
DNS when R < 1 and when small-scale turbulent mixing is mostly absent (results
not presented here). This was already shown by van Aartrijk et al. (2008). Since 〈δz2〉
approaches the asymptote 2εP t/N2 in all DNSs, we can firmly conclude that diabatic
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Figure 3. Time development of 〈δz2〉∗ versus t∗. The dashed and dotted lines show relations
(5.1) and (5.2) respectively, and the solid lines show results of runs C1, E1 and E2. The arrow
indicates the direction of increasing Pr .
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Figure 4. (a) Time development of 〈δz2〉N2/〈w2〉 versus tN ; (b) 〈δz2〉∗ versus t∗. The solid
lines are the results of all A and B runs and run C3. The dashed line in (a) indicates 〈δz2〉 ∼ t2.

dispersion determines mixing of weakly and strongly stratified flows with different
Reynolds and Prandtl numbers.

In figure 4(a) we have collected most of the DNS data to focus on the initial
dispersion stage. All runs initially display ballistic dispersion with 〈δz2〉 ≈ 〈w2〉t2. If
〈w2〉 had been calculated as a Lagrangian mean value over the initial field we would
have 〈δz2〉 = 〈w2〉t2, exactly. Here, we have instead calculated 〈w2〉 as a space–time
mean value over a whole simulation, and therefore this relation is only approximately
satisfied. Pearson et al. (1983) suggested that the adiabatic dispersion should be
bounded by 〈δz2〉 
 〈w2〉/N2 and reach this limit at t 
 N−1. This behaviour was
observed by van Aartrijk et al. (2008) in their DNS. In our DNS, scaling of 〈δz2〉 and
t by 〈w2〉/N2 and N−1 respectively does not lead to a collapse of the onset of the
adiabatic dispersion plateau in the many DNSs, as we see in figure 4(a). The reason
why we do not observe this scaling is that our DNS covers the regime R � 1, while
van Aartrijk et al. (2008) considered the regime R � 1. Figure 4(b) shows the time
development of 〈δz2〉∗ versus t∗ for the same runs. Indeed, the onset of the adiabatic
dispersion plateau appears when 〈δz2〉 
 4EP /N2, in accordance with (5.1), rather
than 〈δz2〉 
 〈w2〉/N2. The range of Fh is too limited to firmly determine whether the
onset appears when t ∼ EP /εP (t∗ ∼ 1) or when t ∝ N−1 as suggested by LB and
Pearson et al. (1983) respectively. Nevertheless, comparing the onset of the adiabatic
dispersion plateaus in figure 4, we see that the DNS data are in better agreement
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Figure 5. Time development of 〈δz2〉∗ vesus t∗. The dashed and dotted lines show relations
(5.1) and (5.2) respectively; the solid and dash-dotted lines are the result of DNSs with vortical
forcing (run B1) and wave forcing (R ≈ 10) respectively.

with LB’s suggestion. Venayagamoorthy & Stretch (2006) also found that T is the
relevant dispersion time scale, rather than N−1.

In order to illustrate the relative independence of the results from the forcing
methodology, we show in figure 5 the dispersion results of DNS with vortical forcing
and wave forcing. The forcing method we used in each case is described in Lindborg &
Brethouwer (2007). Both simulations reveal the same asymptotic dispersion behaviour,
while for shorter times the differences are only small. However, this independence does
probably only exist for R > 1. Van Aartrijk et al. (2008) observed that the growth of
〈δz2〉 was dependent on the forcing method in the regime R < 1. The independence
that we observed here for R > 1 is consistent with Lindborg & Brethouwer (2007)
who found that stratified turbulence dynamics are similar in simulations with vortical
forcing and simulations with wave forcing if the vertical forcing wavenumber is
sufficiently large.

5.2. Adiabatic dispersion in hyperviscosity simulations

Since the DNSs do not reveal a clear inertial stratified turbulence range and prohibit
a detailed investigation of adiabatic dispersion, we have carried out additional
hyperviscosity simulations in order to test the relations suggested by LB. Stratified
turbulence features in hyperviscosity simulations, having a well-defined inertial range,
have extensively been examined by Lindborg (2006), Lindborg & Brethouwer (2007)
and Brethouwer & Lindborg (2008). The numerical approach here is the same as
in those studies, and therefore we refer the reader to those studies for the Eulerian
spectra. The inertial range seen in the horizontal Eulerian spectra is the result of
stratified turbulence and not Kolmogorov turbulence because it occurs at scales larger
than lO . Here, we look for inertial features in the Lagrangian statistics extracted from
the particles. Figure 6(a) shows the Lagrangian frequency spectrum of the buoyancy
fluctuations. At frequencies lower than N there is a narrow range of scales where
the Lagrangian buoyancy spectra are not far from displaying an inertial range
in accordance with (2.9), with CPL ≈ 3. We must note that in the hyperviscosity
simulations we do not resolve the motions down to the Ozmidov length scale,
lO . Consequently, we cannot deduce the higher cutoff frequency of (2.9) from the
simulations, but it indicates that it is at least O(N). In the same range of frequencies
we can expect the Lagrangian spectrum of the vertical velocity fluctuations to have
the form (2.12). This spectrum is shown in figure 6(b). For the same frequencies as
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Figure 6. (a) Compensated Lagrangian frequency spectrum of the buoyancy EPL(ω)ω2/εP .
The straight dashed line is CPL = 3. (b) Lagrangian frequency spectrum of the vertical velocity
fluctuations EwL(ω)πN2/2εP . The straight dashed line is 1 + πCPL with CPL = 3. In both
plots the solid lines show the result of the hyperviscosity simulations. The arrow indicates the
direction of decreasing Fh.
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Figure 7. (a) Lagrangian buoyancy structure function 〈δb2〉N/2πεP . The straight dashed line
is 〈δb2〉 = 2πCPLεP t . (b) Time development of 〈δz2〉∗ versus t∗. The straight and bent thin
dashed lines show relations (5.2) and (5.1) respectively. In both plots the solid lines show the
result of the hyperviscosity simulations. The arrow indicates the direction of decreasing Fh.

in figure 6(a) we see, indeed, a narrow inertial range approaching (2.12) and CPL ≈ 3.
D’Asaro & Lien (2000) measured the power spectrum of the vertical velocity in the
ocean’s thermocline and observed a flat spectrum till ω 
 N , in agreement with (2.12)
and our simulations.

Since the Lagrangian buoyancy spectrum approaches (2.9), the Lagrangian structure
function of the buoyancy should approximate (2.10). This structure function is
displayed in figure 7(a). For short times corresponding to the ballistic regime 〈δb2〉 ∼ t2,
while for t > N−1 there is a limited range of scales in the hyperviscosity simulations
in which 〈δb2〉 moves closer to relation (2.10) with CPL = 3 when Fh becomes smaller,
but there is no obvious inertial range. At longer times 〈δb2〉 levels off and approaches
its upper adiabatic dispersion bound 4EP .

Figure 7(b) shows the time development of 〈δz2〉∗ in the hyperviscosity simulations
together with relations (5.1) and (5.2). Also in the hyperviscosity simulations, 〈δz2〉∗

approaches the diabatic dispersion asymptote (5.1) at long times. The small differences
are owing to the small-scale anisotropy in the simulations, a consequence of the
different diffusivities in the horizontal and vertical directions, and the truncation of
the inertial range at a scale larger than lO . For increasing stratification, 〈δz2〉 moves
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closer to expression (5.2) for the adiabatic dispersion in the inertial range of stratified
turbulence with CPL = 3 for N−1 � t � T , but there is no extended range in which
it matches the relation. We can only speculate that it may require very extended
inertial ranges as in geophysical flows to observe the behaviour expressed by (5.2).
The numerical results shown in figures 6 and 7 indicate that CPL is between 2 and 4,
which is quite close to the estimation made by LB.

6. Conclusions
We have used forced DNSs and numerical simulations with hyperviscosity to

examine vertical fluid particle dispersion in stationary and uniformly stratified
turbulent flows. The simulation results are in good agreement with relation (2.8) for the
mean square of the vertical fluid displacements, 〈δz2〉, derived by LB. For increasing
stratification the adiabatic dispersion contribution, represented by the second term
on the right-hand side of (2.7), moves closer to LB’s suggestion 2πCPLεP t/N2 with
CPL ∼ 3 for N−1 � t � T , according to the simulations with hyperviscosity. However,
the growth of 〈δz2〉 is somewhat slower than linear even in the simulation with the
strongest stratification. Structure functions and power spectra of the buoyancy show
reasonable consistency with or seem to approach the proposed relations by LB. At
about t ≈ T we see the onset of a plateau, since the adiabatic dispersion reaches
its upper bound 4EP /N2. The last term, 2εP t/N2, in the relation derived by LB
represents diabatic dispersion. In all our simulations, spanning quite an extended
range of Froude and Reynolds numbers, 〈δz2〉 approaches 2εP t/N2 in the long-time
limit. This linear growth allows us to define the eddy diffusivity in a way which
is analogous to the definition of molecular diffusivity. According to the analysis of
Einstein (1956), the molecular diffusivity can be defined from the growth of the mean
square displacement of molecules. Analogously, the linear growth of the vertical mean
square displacement of fluid particles suggests that the vertical eddy diffusivity of
stratified turbulence can be calculated as

KE =
1

2

d

dt
〈δz2〉 =

εP

N2
(6.1)

in the long-time limit. The expression (6.1) is equivalent to Osborn’s (1980) expression
Γ εK/N2 for the eddy diffusivity for buoyancy, where Γ = εP /εK is the flux coefficient,
sometimes referred to as the ‘mixing efficiency’. Osborn (1980) derived this expression
using similar arguments as Osborn & Cox (1972), who derived a corresponding
expression for the eddy diffusivity for temperature. The main assumption of Osborn &
Cox (1972) is that there is an approximate balance between production and dissipation
in the governing equation for the scalar variance. In the analysis of Osborn & Cox
(1972) the scalar is temperature, and in the analysis of Osborn (1980) the scalar is
buoyancy. As shown by Winters & D’Asaro (1996) the balance assumption leads to
different eddy diffusivities for different scalars, each depending on the mean gradient
of the particular scalar which is being diffused. As pointed out by Lindborg & Fedina
(2009), the statistical mechanical argument which is the basis for the expression
(6.1), on the other hand, suggests that this expression is the eddy diffusivity for any
scalar which is following fluid particles. In simulations of the Boussinesq equations
with hyperviscosity, together with the equation for a freely diffusing passive scalar,
Lindborg & Fedina (2009) showed that the vertical turbulent diffusion of a passive
scalar is very well described by the classical diffusion equation with an associated
eddy diffusivity given by (6.1).
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The vertical eddy diffusivity is a quantity of great practical importance in
oceanography as well as meteorology. The numerical verification of the linear growth
of 〈δz2〉 which we have presented in this paper may therefore be a result which can
influence these fields.
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